Skip to main content
Menu
US

In Vivo Imaging

Overview

Pre-clinical imaging techniques including  in vivo, ex vivo, and in vitro imaging enable the understanding of disease from cellular to whole animal models and are used in the translation to, and development of therapies in clinical-relevant models.

High-resolution in vivo imaging methods include radionuclide imaging and optical imaging. Radionuclide imaging methods utilize PET (positron emission tomography) and SPECT (single-photon emission tomography) techniques. Optical imaging methods utilize fluorescence, reflectance, or bioluminescence as a source of contrast.

Advances in the development of biologically compatible NIRF (near-infrared fluorescence) dyes enable imaging of deep tissues in vivo. Imaging within the NIR spectrum (650 – 900 nm) allows maximum tissue penetration with minimal background autofluorescence both in culture and in vivo. Targeted, activatable, and vascular NIRF probes have been used to study cancer, inflammation, angiogenesis, infection, and vascular and other diseases.

Bioluminescent imaging exploits the emission of visible light at specific wavelengths based on reactions catalyzed by luciferases. The light from these enzymatic reactions typically has broad emission spectra that frequently extends beyond 600 nm, providing transmission of light through tissues. In a typical experiment, the bioluminescent agent (probe, cell line, or microorganism) is introduced into the animal model. Luciferin is injected immediately before data acquisition. Bioluminescent imaging has been used to study cancer, tumor growth and recession, bacterial and biofilm growth, and therapeutic agents such as antibiotics and cancer therapeutics.   

Revvity offers radiolabeled, near-infrared (NIR) fluorescent, and bioluminescent reagents for in vivo imaging, as well as 2D and 3D imagers for small animal imaging.

Products by research application

IVISense™ Fluorescent and IVISbrite™ Bioluminescent Reagents

IVISense Fluorescent Agents

We offer NIR Fluorescent imaging reagents that fall into three different categories:

Activatable Probes

Activatable probes are optically silent upon injection but are activated in vivo through cleavage by specific protease biomarkers of disease. Benefits include biologically specific readouts and high signal-to-noise at the target biology. The FAST platform represents the next generation of agents.  Using a novel small molecule design, the FAST agents offer improved specificity, accelerated activation profiles and earlier imaging timepoints.

  • IVISense Cat B FAST
    Fluorescent imaging probe for selective imaging of cathepsin B proteinases (Cat B). Optically silent in the unactivated state, becoming highly fluorescent when activated.
  • IVISense Cat K FAST
    Fluorescent imaging probe for selective imaging of cathepsin B proteinases (Cat B). Optically silent in the unactivated state, becoming highly fluorescent when activated.
  • IVISense MMP and IVISense MMP FAST 
    Fluorescent probe for imaging of MMP (metalloproteinase) activity, which is involved in many disease-related phenomena including cancer propagation, invasion and metastasis, rheumatoid arthritis and areas of cardiovascular disease.
  • IVISense Neutrophil Elastase FAST 
    Fluorescent neutrophil elastase-activatable probe that is optically silent upon injection and produces fluorescent signal after cleavage by elastase produced by neutrophil cells.
  • IVISense Pan Cathepsin & IVISense Pan Cathepsin FAST 
    Versatile imaging of changes in cathepsin-based protease activity as seen in a number of pathological states and disease-related events including rheumatoid arthritis, cancer, atherosclerosis, angiogenesis and cardiovascular disease.
  • IVISense Renin FAST 
    Fluorescent probe for imaging of renin-angiotensin pathway associated with hypertension, kidney and cardiovascular disease.
Targeted Probes

Targeted probes bind to specific biomarkers within the cell or animal: cell membrane constituents such as lipids, receptors, glycoproteins, etc. The use of targeted probes in preclinical imaging allows for highly specific targeting of particular biologies.

  • IVISense 2-DG
    NIR targeted probe for non-invasive imaging of glucose uptake of tumors in vivo.
  • IVISense Annexin-V
    In vivo targeting of membrane-bound phosphatidylserine exposed during the early stages of apoptosis.
  • IVISense Bombesin Receptor
    NIR targeted probe specific to bombesin receptors, which are expressed in many types of cancers.
  • IVISense Folate Receptor
    Highly specific and sensitive in detection of Folate Receptor protein.  Can be used to closely monitor and quantitate tumor growth and metabolism.
  • IVISense GFR
    Near infrared (NIR) fluorescent-labeled form of inulin. Enables assessment of Glomerular filtration rate (GFR) by measurement of the rate of disappearance of labeled inulin from the blood.
  • IVISense Hypoxia CA IX
    Fluorescent imaging probe that detects the tumor cell surface expression of carbonic anhydrase 9 (CA IX) protein, which increases in hypoxic regions within many tumors, especially in cervical, colorectal, non-small cell lung tumors.
  • IVISense Integrin Receptor
    Potent antagonist targeting integrin αγβ3, expressed in oncology, atherosclerosis and angiogenesis disease models.  Small molecule fluorochrome to label target ligand.
  • IVISense Osteo
    Fluorescent in vivo bisphosphonate imaging probe that targets areas of micro-calcifications and bone remodeling and enables imaging of bone growth and resorption.
  • IVISense Tomato Lectin
    Near-infrared dye-labeled macromolecule that targets the vasculature and enables imaging of blood vessels and angiogenesis.
  • IVISense Transferrin Receptor
    Near infrared (NIR) targeted fluorescent imaging probe consisting of recombinant transferrin conjugated to IVISense dye, designed to bind to transferrin receptors expressed in cancer cells.
Vascular Probes

Vascular and physiologic probes are a range of highly fluorescent in vivo imaging molecules that remain highly stable and localized in the anatomy for various periods of time to enable imaging of disease physiology, vasculature, vascular permeability and angiogenesis.

  • IVISense Vascular
    Near-infrared dye-labeled macromolecule for imaging of vascularity, perfusion and vascular permeability. Remains localized in vasculature for 0-4 hours and accumulate in tumors and arthritic joints at 24 hours.
  • IVISense Vascular NP
    Near-infrared dye-labeled nanopaticles for imaging of vascularity, perfusion and vascular permeability with a long pharmacokinetic profile.
  • IVISense Gastrointestinal
    Near-infrared, fluorescently labeled macromolecule that may be used to monitor the effects of disease or drugs on gastric motility and or gastric emptying. It may also be used as an anatomical marker for the gastrointestinal tract.
  • IVISense Acute Vascular
    This is a small molecule fluorescence probe and is used as a control or in vascular permeability imaging.
  • IVISense Edema
    Small molecule fluorescence probe for imaging of vascularity, perfusion and vascular permeability with a short pharmacokinetic profile. This agent binds to albumin in blood for extended (30m-1h) circulation.
IVISense Fluorescent Dyes & Labels

IVISense Fluorescent Dyes

Ideal agent for labeling proteins and antibodies, available as NHS esters and MAL.

IVISense Fluorescent Cell Labeling Dyes

Ideal agent for labeling cells for cell tracking studies.

IVISbrite Bioluminescent Reagents
Radioimaging Agents

Instruments and software options

 

2D planar imaging

3D tomographic imaging

Can be used for: Bioluminescence or fluorescence imaging Bioluminescence (BLT) or fluorescence (FLT) imaging
Strengths Instrumentation is typically less expensive; simple and straightforward technology Can be used to reconstruct the 3D position of the signal within the tissue, organ, or small animal; can determine quantitative distribution of the signal; can be combined with anatomical structure information for higher resolution modeling and multi-mode imaging of whole animal
Challenges Depth cannot be resolved; biological tissue attenuates signal non-linearly; hard to image deep target tissues and organs; provides only relatively quantitative results Instrumentation is typically more expensive than 2D optical imaging instruments
Notes 2D planar imaging tends to give better S:B with bioluminescent signals, compared to fluorescent signals 3D tomographic imaging tends to perform better for fluorescent signals, compared to bioluminescent signals
 
In vivo imaging systems
3D imaging systems
2D imagers
Other instruments

While near-infrared agents are ideal for 2D and 3D whole animal imaging, many researchers choose to do additional validation work on cells or tissues. Most fluorescent agents work well for these types of applications. One of the biggest limitations is that many microscopes do not image wavelengths in the far-red range very efficiently. Because of this, we recommend using fluorescent agents in the 645-680 nm range for these types of applications.

Proper imaging techniques and general protocol

Mouse injections
Anesthetizing a mouse
Depilation

FAQs

Question

Answer

How many mouse doses equals a rat dose? As a rule of thumb, 10 mouse doses equals 1 rat dose.
What is a product's structure? We do not release product structures due to proprietary information. If you have a specific question about the structure, please check with our technical support team.
Can I inject more/less of the product into my animal than recommended on the TD sheet? You can technically inject as much or as little material into your animal as you wish. We only guarantee results based on our recommendations.
Can I use this product in clinical applications? Our bioluminescent and fluorescent imaging products are for research purposes only.
Do I have to shave/Nair the mice in order to image them on an FMT? If using an FMT, the mice need to be hairless in the area that is being imaged. This can be done by either shaving, using a product like Nair, or using hairless mice.
I did not have enough liquid in my vial to do 10 mouse injections. Each vial of liquid reagent contains a little excess to account for the inherent loss in the syringe. It may be difficult to remove all the volume from the vial unless the vial is centrifuged so that all the liquid is removed from the cap and sides.
Can I dry down a liquid product to solid? Unfortunately, the products that are sold as a liquid are done so for specific reasons and drying them into a solid may have adverse effects on the chemistry. We do not offer any guarantees and do not support a product that has been altered and stored in a state different than as what it was delivered.
Can I get lot-specific information about a product? Certificate of Analysis? All of the products pass through many QC steps to ensure that the material is within the specifications listed on the technical data sheets. We do not offer individualized lot information. If you have a concern about a lot that you received based on performance, technical support can be contacted to verify the lot information and results.

For research use only. Not for use in diagnostic procedures. The information provided above is solely for informational and research purposes only. The information does not constitute medical advice and must not be used or interpreted as such. Consult a qualified veterinarian or researcher for specific guidance or use information. Revvity assumes no liability or responsibility for any injuries, losses, or damages resulting from the use or misuse of the provided information, and Revvity assumes no liability for any outcomes resulting from the use or misuse of any recommendations. The information is provided on an "as is" basis without warranties of any kind. Users are responsible for determining the suitability of any recommendations for the user’s particular research. Any recommendations provided by Revvity should not be considered a substitute for a user’s own professional judgment. Users are solely responsible for complying with all relevant laws, regulations, and institutional animal care and use committee (IACUC) guidelines in their use of the information provided.